Using LDA for audit risk assessment of the Indonesian BOS fund: Insights from news analysis

Authors

  • Iis Istianah Faculty of Economics and Business, Gadjah Mada University, Yogyakarta
  • Nia Pramita Sari Faculty of Economics and Business, Gadjah Mada University, Yogyakarta https://orcid.org/0009-0008-7597-0550
  • Afrialdi Syahputra Butar Butar The Audit Board of the Republic of Indonesia, Jakarta
  • Bonar Cornellius Pasaribu Master of Public Policy and Management, University of Melbourne, Melbourne

DOI:

https://doi.org/10.28986/jtaken.v10i2.1803

Keywords:

risk-based audit, text mining, topic modeling, LDA, BOS Fund

Abstract

This study explores the implementation of text mining in audit risk assessment. We use the latent Dirichlet allocation (LDA) algorithm to reveal hidden topics representing risks in the management of the Indonesian School Operational Assistance Fund (BOS Fund). Using 1,460 news data points from a leading Indonesian news portal, this study proves that using text mining with the LDA algorithm effectively identifies the risks of an audit object. This study makes two important contributions to the information systems and audit literature. First, it provides evidence from online news archives to facilitate a more reliable, current, and comprehensive selection of potential audit areas by encompassing evolving social realities and facts. In the contemporary era, the accelerated and precise dissemination of information via the Internet renders the LDA approach feasible and prudent. Second, it provides a practical and applicable framework for audit risk assessment using nonfinancial sources from independent parties, which can be used as a guide for the development of audit models in the public and private sectors.

References

ACCA. (2008). A risk-based approach to auditing financial statements. https://www.accaglobal.com/content/dam/acca/global/PDF-students/2012s/sa_feb08_pine.pdf

Aggarwal, C. C. (2015). Data mining: The textbook. Springer International Publishing, pp. 285–344. https://doi.org/10.1007/978-3-319-14142-8_10

Arens, A. A. (2012). Auditing and assurance services: An integrated approach. Pearson Education.

Arens, A. A., Elder, R. J., Mark S, B., Hogan, C. E., & Jones, J. C. (2021). Auditing: The Art and Science of Assurance Engagements. Pearson Education Canada.

Bell, T. B., Peecher, M. E., & Solomon, I. (2005). The 21st-century public company audit: Conceptual elements of KPMG’s global audit methodology. KPMG International.

Bird, C., Menzies, T., & Zimmermann, T. (2015). Chapter 1 - Past, present, and future of analyzing software data. In C. Bird, T. Menzies, & T. Zimmermann (Eds.), The art and science of analyzing software data (pp. 1–13). Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-411519-4.00001-X

Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77–84. https://doi.org/10.1145/2133806.2133826

Blei, D. M., & Lafferty, J. D. (2009). Topic models. In A. Srivastava, & M. Sahami (Eds.), Text mining: Classification, clustering and applications (pp. 71-93). Cambridge: Chapman and Hall/CRC.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.

Boskou, G., Kirkos, E., & Spathis, C. (2019). Classifying internal audit quality using textual analysis: The case of auditor selection. Managerial Auditing Journal, 34(8), 924–950. https://doi.org/10.1108/MAJ-01-2018-1785

BPK. (2009). Summary of Semester Audit Results II Year 2009 (Ikhtisar Hasil Pemeriksaan Semester II Tahun 2009). https://www.bpk.go.id/ihps

BPK. (2018). Summary of Semester Audit Results II Year 2018 (Ikhtisar Hasil Pemeriksaan Semester II Tahun 2018). https://www.bpk.go.id/ihps

BPK. (2020). Performance Audit Guidelines (Petunjuk Pelaksanaan Pemeriksaan Kinerja). Supreme Audit Board of The Republic of Indonesia, Jakarta.

Caylor, M., Cecchini, M., & Winchel, J. (2017). Analysts’ qualitative statements and the profitability of favorable investment recommendations. Accounting, Organizations and Society, 57, 33–51. https://doi.org/10.1016/j.aos.2017.03.005

Cheong, A., Yoon, K., Cho, S., & No, W. (2020). Classifying the contents of cybersecurity risk disclosure through textual analysis and factor analysis. Journal of Information Systems, 35. https://doi.org/10.2308/ISYS-2020-031

Chuluunsaikhan, T., Ryu, G. A., Yoo, K. H., Rah, H., & Nasridinov, A. (2020). Incorporating deep learning and news topic modeling for forecasting pork prices: The case of South Korea. Agriculture (Switzerland), 10(11), 1–22. https://doi.org/10.3390/agriculture10110513

Craja, P., Kim, A., & Lessmann, S. (2020). Deep learning for detecting financial statement fraud. Decision Support Systems, 139, 113421. https://doi.org/10.1016/j.dss.2020.113421

Daróczi, G. (2015). Mastering data analysis with R. Packt Publishing Ltd.

Dyer, T., Lang, M., & Stice-Lawrence, L. (2017). The evolution of 10-K textual disclosure: Evidence from Latent Dirichlet Allocation. Journal of Accounting and Economics, 64(2–3), 221–245. https://doi.org/10.1016/j.jacceco.2017.07.002

Ertek, G., & Kailas, L. (2021). Analyzing a decade of wind turbine accident news with topic modeling. Sustainability (Switzerland), 13(22). https://doi.org/10.3390/su132212757

Feldman, R., & Sanger, J. (2007). The text mining handbook: Advanced approaches in analyzing unstructured data. Cambridge University Press.

Gandía, J. L., & Huguet, D. (2021). Textual analysis and sentiment analysis in accounting. Revista de Contabilidad-Spanish Accounting Review, 24(2), 168–183. https://doi.org/10.6018/RCSAR.386541

Hájek, P., & Henriques, R. (2017). Mining corporate annual reports for intelligent detection of financial statement fraud – A comparative study of machine learning methods. Knowledge-Based Systems, 128. https://doi.org/10.1016/j.knosys.2017.05.001

Haniatun, H., Islahuddin, I., & Abdullah, S. (2022). Influence of management competence, utilization of information technology and stakeholder engagement on accountability of management of BOS funds with transparency as a moderating variable (Study on SMAN and SMKN in Aceh Selatan district). International Journal of Business, Economics, and Social Development, 3(3), 110–123.

Herrudi., Handajani, L., & Surasni, N. K. (2018). Fraud financial management of school operational assistance (BOS): Study at state elementary school in East Lombok, Indonesia. International Journal of Economics, Commerce and Management, VI(7).

Huang, F., Yuan, C., Bi, Y., Lu, J., Lu, L., & Wang, X. (2022). Multi-granular document-level sentiment topic analysis for online reviews. Applied Intelligence, 52, 7723–7733. https://doi.org/10.1007/s10489-021-02817-1

Ibtida, R., & Pamungkas, B. (2017, August). The design of a risk-based performance audit program for court-fee management for the comptroller of supreme court of Indonesia [Paper presentation]. The 6th International Accounting Conference. https://doi.org/10.2991/iac-17.2018.36

Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: Models, applications, a survey. Multimedia Tools and Applications, 78(11), 15169–15211. https://doi.org/10.1007/s11042-018-6894-4

Johnstone-Zehms, K. M., Gramling, A. A., & Rittenberg, L. E. (2015). Auditing: A risk based-approach to conducting a quality audit (10th ed.). Cengage Learning.

Knechel, W. R. (2007). The business risk audit: Origins, obstacles and opportunities. Accounting, Organizations and Society, 32(4), 383–408. https://doi.org/10.1016/j.aos.2006.09.005

Loughran, T., & Mcdonald, B. (2011). When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. The Journal of Finance, 66(1), 35–65. https://doi.org/https://doi.org/10.1111/j.1540-6261.2010.01625.x

Loughran, T., McDonald, B., & Yun, H. (2009). A wolf in sheep’s clothing: The use of ethics-related terms in 10-K reports. Journal of Business Ethics, 89, 39–49.

McComb, M. E., & Shaw, D. L. (1972). The agenda-setting function of mass media. Public Opinion Quaterly, 36(2), 176–187. http://www.jstor.org/stable/2747787

Miner, G. (2012). Practical text mining and statistical analysis for non-structured text data applications. Academic Press.

Ministry of Education and Culture. (2023). Distribution report of the school operational assistance fund (Laporan penyaluran BOS). https://bos.kemdikbud.go.id/rekap/penyaluran

Nazmi, E., Arori, I. M. S., & Ibrahim, M. R. (2017). The factors affect business risk audit and their impact on the external auditing quality in Jordanian commercial banks (Case study). European Journal of Accounting, Auditing and Finance Research, 5(5), 1–17.

Nugraheni, N. M. T., & Pamungkas, B. (2021). Analysis of the RBA implementation and the preparation of an audit program at the Ministry of Villages, Development of Disadvantaged Regions and Transmigration. Jurnal Tata Kelola Dan Akuntabilitas Keuangan Negara, 7(1), 77–93. https://doi.org/10.28986/jtaken.v7i1.489

Nurlayli, A., & Nasichuddin, M. A. (2019). Topik modeling penelitian dosen jptei uny pada google scholar menggunakan latent dirichlet allocation. Elinvo (Electronics, Informatics, and Vocational Education), 4(2), 154–161.

Perko, T. (2012). The role of mass media and journalism in risk communication. Journal of Mass Communication and Journalism, 2(2). https://doi.org/10.4172/2165-7912.1000e110

Rahayu, S., Ludigdo, U., & Irianto, G. (2015). Budgeting of school operational assistance fund based on the value of gotong royong. Procedia-Social and Behavioral Sciences, 211, 364–369. https://doi.org/10.1016/j.sbspro.2015.11.047

Ramadhani, R. S., Lawita, N. F., & Anriva, D. (2022). The factors affecting fraud prevention in BOS fund management. Economic Education Analysis Journal, 11(2), 144–154. https://doi.org/10.15294/eeaj.v11i2.54135

Re Lee, K., Hyun Kim, J., Jang, J., Yoon, J., Nan, D., Kim, Y., & Kim, B. (2022). News big data analysis of international start-up innovation discourses through topic modelling and network analysis: Comparing East Asia and North America. Asian Journal of Technology Innovation, 31(3), 581–603. https://doi.org/10.1080/19761597.2022.2134154

Rittenberg, L. E., & Schwieger, B. J. (1994). Auditing: Concepts for a changing environment. Fort Worth, Tex.: Dryden Press.

Sastra, C. D., Yuhertiana, I., & Budiwitjaksono, G. S. (2018). The use of risk based audit techniques in government entities: Indonesia case. Account and Financial Management Journal, 3(6), 1581–1586. https://doi.org/10.31142/afmj/v3i6.04, I.F. - 4.614

Sun, L., & Yin, Y. (2017). Discovering themes and trends in transportation research using topic modeling. Transportation Research Part C: Emerging Technologies, 77, 49–66. https://doi.org/10.1016/j.trc.2017.01.013

Tan, A.-H. (1999). Text mining: The state of the art and the challenges. https://www.researchgate.net/publication/2471634_Text_Mining_The_state_of_the_art_and_the_challenges

Van Buuren, J., Koch, C., van Nieuw Amerongen, N., & Wright, A. M. (2014). The use of business risk audit perspectives by non-big 4 audit firms. AUDITING: A Journal of Practice & Theory, 33(3), 105–128. https://doi.org/10.2308/ajpt-50760

Vijayarani, S., Ilamathi, M. J., & Nithya, M. (2015). Preprocessing techniques for text mining - An overview. International Journal of Computer Science & Communication Networks, 5(1), 7–16.

Vogler, D., & Eisenegger, M. (2021). CSR communication, corporate reputation, and the role of the news media as an agenda-setter in the digital age. Business and Society, 60(8), 1957–1986. https://doi.org/10.1177/0007650320928969

Wendling, C., Radisch, J., & Jacobzone, S. (2013). The use of social media in risk and crisis communication (OECD Working Papers on Public Governance No. 24). https://doi.org/10.1787/5k3v01fskp9s-en

Zhaokai, Y., & Moffitt, K. C. (2019). Contract analytics in auditing. Accounting Horizons, 33(3), 111–126. https://doi.org/10.2308/acch-52457

Zorio-Grima, A., & Carmona, P. (2019). Narratives of the big-4 transparency reports: Country effects or firm strategy? Managerial Auditing Journal, 34(8), 951–985. https://doi.org/10.1108/MAJ-09-2018-1994

Downloads

Submitted

2024-10-02

Accepted

2024-12-02

Published

2024-12-26

How to Cite

Istianah, I., Sari, N. P., Butar Butar, A. S., & Pasaribu, B. C. (2024). Using LDA for audit risk assessment of the Indonesian BOS fund: Insights from news analysis. Jurnal Tata Kelola Dan Akuntabilitas Keuangan Negara, 10(2), 191–213. https://doi.org/10.28986/jtaken.v10i2.1803

Similar Articles

<< < 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.